
A-M Systems Model 4000 Communication Protocol	6
[bookmark: _Toc107119845]

Model 3500 3600
16-Channel Extracellular Differential AC Amplifier

Matlab Source Code

Version 0.1

[bookmark: _Toc376267177]Table of Contents
Table of Contents	1
Standard Instruments	2
USB Configuration	3
Customized Instruments	3
Instrument Messages	4
AMS_RESPONSE_ERROR	4
AMS_SLAVE_RESONSE	4
AMS_MSG_READ_FIRMWARE_VERSION	4
AMS_MSG_READ_HARDWARE_CONFIG	5
AMS_MSG_READ_INSTRUMENT_NAME	5
AMS_MSG_READ_BOX_AMOUNT	5
AMS_MSG_READ_SERIAL_NUMBER	5
AMS_MSG_READ_FLASH_BLOCK	7
AMS_MSG_LOAD_FLASH_BLOCK	7
AMS_MSG_SAVE_FLASH_BLOCK	8
AMS_MSG_WRITE_CHANNEL_VALUES	9
{hardware config block}	10
{channel config block}	10
{config value}	11
Revision History	12

Model 3500 or 3600 Matlab Class

The Matlab Class to interface with A-M Systems Model 3500 or 3600 is AMS3536.m. This file needs to be in the current folder, or on the MATLAB path. There is an example file AMS3536Examples.m that give some simple examples of how to use the AMS3536.m Class

AMS3536Examples.m
This file lists several examples of how to use the Model 4000 Class (AMS4k.m). It covers basic instatiation followed by viewing and changing the settings on the instrument.

AMS3536.m
This is the class that contains the properties and methods necessary to communicate with the instrument. Instrument communication is simplified by the class methods, and is explained in detail in the Instrument Messaging section. Communication is done over the a virtual serial port created by the usb device in the instrument. The usb drivers need to be installed properly for the class to be used. Current drivers can be downloaded from FTDI’s websites:
http://www.ftdichip.com/FTDrivers.htm.
Properties
There are two main properties. Channels and Globals. When the AMS3536 object is instantiated these properties are empty, and can be filled by running the .connect method.

Channels:
The Channels property holds the settings for each individual channel.
Settings are shown below for standard settings or can be read from the Hardware Configuration Block for custom instruments.

Channels is a 16x7 matrix with the following collums:
[Ch# Mode HP Notch LP Gain Ref]
Valid values are:
 Ch# = 1 to 16
 Mode = 0 (off), 1 (on), 2 (stim)
 HP = 0 to 7. 0=lowest frequncy, 7=highest frequency
 	Standard values: 0.3Hz 1Hz 3Hz 10Hz 30Hz 100Hz 300Hz 500Hz
 Notch = 0 (Off), 1 (on)
 LP = 0 to 7. 0=lowest frequncy, 7=highest frequency
 	Standard values: 100Hz 300Hz 500Hz 1kHz 3kHz 5kHz 10kHz 20kHz
 Gain = 0 to 12 0=lowest gain, 12=highest gain
 	Standard values: 2 4 10 20 50 100 200 500 1k 2k 5k 10k 20k
 Ref = 0 (ref or GND), 1 (Bus)

 EXAMPLE: 	AMS1.Channels(3,:)=[3 0 2 0 7 2 0];
 		AMS1.Channels(3,4)=7;
Globals:
The Globals property are the settings that are the same for all channels. Settings are shown below for standard settings or read from the Hardware Configuration Block for custom instruments.

Globals is a 1x6 matrix with the following collums:
 	[StimSource CalAmp CalOn RefSource MonA MonB]

Valid values are:
 StimSource = 3600: 0(Stim1), 1(Stim2). 3500: 0(Stim2) 1(Joined)
 CalAmp = 0 to 3 = 1V to 1mVp-p
 CalOn = 0 (Off), 1 (on)
 RefSource = 3500: 0(ExtBNC), 1(GND). 3600: 1 to 17=Ch1-Ch16,Ref
 MonA = 1 to 16 = Ch1 to Ch16
 MonB = 1 to 16 = Ch1 to Ch16

 EXAMPLE: 	AMS1.Globals =[0 2 0 1 1 14];
 		 AMS1.Globals(5)=7;

Methods

Constructor:
Obj = 	AMS3536(amsPort) creates a handle to an instance of the AMS3536 Class. The instance is set to be associated with the Instrument that is paired with the com port defined in the input amsPort.
INPUT: 	amsPort - string value defining the numeric value of the desired Com Port

OUTPUT: 	obj - handle to the instance of the AMS3536 Class

EXAMPLE: 	AMS1= AMS3536('COM7');

TakeControl: Allow computer to send data to the instrument

SYNOPSIS: 	TakeControl() removes control of the instrument from the front panel and allows the instrument to receive instructions from the computer.

OUTPUT: 	isSet - - Boolean value which indicates if the operation was successful or not (1=TRUE, 0=FALSE).

EXAMPLE: AMS1.TakeControl;

connect: Connects to the Instrument

SYNOPSIS: connect() establishes a serial connection between the instrument and computer using the com port defined in the ComPort property of the object. If a successful connection is made it will fill the object with the current instrument values.

OUTPUT: isConnected - - Boolean value which indicates if the operation was successful or not (1=TRUE, 0=FALSE).

EXAMPLE: AMS1.connect;

ReadFlashBlock: Reads a saved setting set from the instrument.

SYNOPSIS: [num, chandata, globdata]=ReadFlashBlock(block).Returns channel and global settings for one of the five flash blocks.

INPUT: 	block - a number from 1 to 5 representing one of the complete instrument settings saved on the instrument.

OUTPUT: 	n - the particular flash block
chandata - 2D array of channel settings
globdata - 1D array of global settings

EXAMPLE:	[n channels globals] = AMS1.ReadFlashBlock(2);

See also LoadFlashBlock, SaveActiveToFlashBlock

LoadFlashBlock: Make a saved setting set active.

SYNOPSIS: Applies a saved settings to the active instrument controls.
	success=LoadFlashBlock(block)

INPUT: block - a number from 1 to 5 representing one of the complete instrument settings saved on the instrument.

OUTPUT success - Boolean value which indicates if the operation was successful or not (1=TRUE, 0=FALSE).

EXAMPLE: AMS1.LoadFlashBlock(2);

See also ReadFlashBlock, SaveFlashBlock

SaveActiveToFlashBlock: Takes active settings and saves it into a flash slot.

SYNOPSIS: SaveActiveToFlashBlock(n,'name') Takes active settings and saves in to a flash slot identified by the number n and the string 'name'

INPUT:	 block - a number from 1 to 5 representing one of the five complete instrument settings saved on the instrument.

 	name name is the string that the flash slot and number.

OUTPUT	 success - Boolean value which indicates if the operation was successful or not (1=TRUE, 0=FALSE).

[bookmark: _GoBack]EXAMPLE: AMS1.LoadFlashBlock(2, ‘experiment’);

See also ReadFlashBlock, LoadFlashBlock

Instrument Messaging
STANDARD INSTURMENT OVERVIEW

All messages passed to the library to be sent to a Model 3500 or Model 3600 instrument include a message verb defining the action to be performed, and any additional data needed for execution of the message. Responses from the instrument are delivered to the client application beginning with a matching response verb to indicate the action performed, followed by any additional data sent with the response message.

Note: Byte sequences enclosed in braces such as {program block} are defined in detail at the end of this section. Unless otherwise noted, all strings are variable in length and consist of up to 18 ASCII characters (1 byte each) followed by a required NULL terminator.

[bookmark: _Toc136750038]AMS_MSG_LOAD_FLASH_PROGRAM
Loads one of the programs saved in onboard flash memory into active memory, replacing all of the current settings with those in the program being loaded. This message is identical to selecting Load from the Menu on the front panel LCD touch screen on the instrument.
Note: this message requires remote control.
Message Format (2 bytes)	Length
Byte 0:	msgLoadFlashBlock	1
Byte 1:	program number to load (1 – 5)	1

Protocol 5, 6 (Model 3500):
Response Format (37 bytes)	Length
Byte 0:	0xC2	1
Byte 1:	currently program number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	35

Protocol 7 (Model 3600):
Response Format (38 bytes)	Length
Byte 0:	0xC2	1
Byte 1:	currently program number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	36
[bookmark: _Toc136750039]
AMS_MSG_READ_ACTIVE_PROGRAM
Requests the settings for the currently running program.
Message Format (1 byte)	Length
Byte 0:	msgReadActiveProgram	1

Protocol 5, 6 (Model 3500):
Response Format (37 bytes)	Length
Byte 0:	0xC0	1
Byte 1:	Current Program Number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	35

Protocol 7 (Model 3600):
Response Format (38 bytes)	Length
Byte 0:	0xC0	1
Byte 1:	Current Program Number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	36

[bookmark: _Toc136750040]AMS_MSG_READ_FIRMWARE_VERSION
Requests the build numbers for the internal processor firmware and the front panel LCD touch screen display firmware.
Message Format (1 byte)	Length
Byte 0: 	msgReadFirmwareVersion	1

Response Format (3 bytes)	Length
Byte 0:	0xA5	1
Byte 1:	Processor build number	1
Byte 2:	LCD build number	1
[bookmark: _Toc136750041]
AMS_MSG_READ_FLASH_NAMES
Requests the user assigned program names of the 5 program slots available in onboard flash memory.
Message Format (1 byte)	Length
Byte 0:	msgReadFlashNames	1

Response Format (up to 96 bytes)	Length
Byte 0:	0xC7	1
Byte 1:	Program #1 Name (string)	up to 19
Byte _:	Program #2 Name (string)	up to 19
Byte _:	Program #3 Name (string)	up to 19
Byte _:	Program #4 Name (string)	up to 19
Byte _:	Program #5 Name (string)	up to 19

[bookmark: _Toc136750042]AMS_MSG_READ_FLASH_PROGRAM
Requests the program saved in one of the onboard flash memory slots without altering the program currently running in active memory.
Message Format (2 bytes)	Length
Byte 0:	msgReadFlashBlock	1
Byte 1:	Program Number (1 – 5)	1

Protocol 5, 6 (Model 3500):
Response Format (up to 56 bytes)	Length
Byte 0:	0xC1	1
Byte 1:	Program Number (1 – 5)	1
Byte 2:	{program block}	35
Byte 37:	Program Name (string)	up to 19

Protocol 7 (Model 3600):
Response Format (up to 57 bytes)	Length
Byte 0:	0xC1	1
Byte 1:	Program Number (1 – 5)	1
Byte 2:	{program block}	36
Byte 38:	Program Name (string)	up to 19
[bookmark: _Toc136750043]
AMS_MSG_READ_HARDWARE_CONFIG
Requests the hardware configuration data, which fully describes any hardware customizations present in the instrument.
Note: This message should not be used with Protocol 5 instruments because of an implementation error causing an incorrect response to be sent from the instrument. No customized Protocol 5 instruments were ever produced.
Message Format (1 byte)	Length
Byte 0:	msgReadHardwareConfig	1

Response Format (1154 bytes)	Length
Byte 0:	0xAB	1
Byte 1:	{hardware config block}	994
Byte 995:	Reserved	159

[bookmark: _Toc136750044]AMS_MSG_READ_INSTRUMENT_NAME
Requests the user assigned instrument name, useful for distinguishing multiple instruments being controlled by a single client application.
Message Format (1 byte)	Length
Byte 0: 	msgReadInstrumentName	1

Response Format (up to 20 bytes)	Length
Byte 0:	0xA7	1
Byte 1:	Instrument Name (string)	up to 19

[bookmark: _Toc136750045]AMS_MSG_READ_PROTOCOL
Requests the communication protocol version supported by the instrument.
Message Format (1 byte)	Length
Byte 0: 	msgReadProtocolVersion	1

Response Format (2 bytes)	Length
Byte 0:	0xA1	1
Byte 1:	Protocol Version	1
[bookmark: _Toc136750046]
AMS_MSG_READ_SERIAL_NUMBER
Requests the serial number of the instrument.
Message Format (1 byte)	Length
Byte 0: 	msgReadSerialNumber	1

Response Format (up to 10 bytes)	Length
Byte 0:	0xA3	1
Byte 1:	Serial Number (string – up to 8 characters)	up to 9

[bookmark: _Toc136750047]AMS_MSG_READ_STATUS
Requests the current control status of the instrument.
Message Format (1 byte)	Length
Byte 0: 	msgReadStatus	1

Response Format (3 bytes)	Length
Byte 0:	0xCA	1
Byte 1:	0 = Font panel LCD touch screen control	1
	1 = Computer control via USB
Byte 2:	0 = TTL Control Off	1
	1 = TTL Control On
[bookmark: _Toc136750048]
AMS_MSG_SAVE_ACTIVE_TO_FLASH
Saves the program currently running in active memory to one of the program slots in the onboard flash memory and assigns it the name specified. This message is identical to selecting Save from the Menu on the front panel LCD touch screen display.
[bookmark: OLE_LINK2]Note: this message requires remote control.
Message Format (up to 21 bytes)	Length
Byte 0: 	msgSaveActiveProgramInFlash	1
Byte 0:	Program Number (1 – 5)	1
Byte 1:	Program Name (string)	up to 19

Protocol 5, 6 (Model 3500):
Response Format (up to 56 bytes)	Length
Byte 0:	0xC3	1
Byte 1:	Current Program Number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	35
Byte 37:	Program Name (string)	up to 19

Protocol 7 (Model 3600):
Response Format (up to 57 bytes)	Length
Byte 0:	0xC3	1
Byte 1:	Current Program Number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	36
Byte 38:	Program Name (string)	up to 19
[bookmark: _Toc136750049]
AMS_MSG_TAKE_CONTROL
Commands the instrument to accept program settings modifications from the client application and causes the front panel LCD touch screen display to indicate that the instrument is under remote control.
Message Format (1 byte)	Length
Byte 0: 	msgTakeControl	1

Response Format (2 bytes)	Length
Byte 0:	0xC9	1
Byte 0:	0 = TTL Control Off	1
	1 = TTL Control On

[bookmark: _Toc136750050]AMS_MSG_WRITE_ACTIVE_DATA_VALUE
Modifies a single setting in the currently running program.
Note: this message requires remote control.
Message Format (3 bytes)	Length
Byte 0: 	msgWriteSettingValue	1
Byte 1:	{data offset}	1
Byte 2:	value	1

Response Format (3 bytes)	Length
Byte 0:	0xC5	1
Byte 1:	{data offset}	1
Byte 2:	value	1
[bookmark: _Toc136750051]
AMS_MSG_WRITE_ACTIVE_PROGRAM
Transmits a complete program of settings to the instrument and loads it as the currently running program. The current program number is set to 0 to indicate that the running settings were loaded remotely.
Note: this message requires remote control.
Protocol 5, 6 (Model 3500):
Message Format (36 bytes)	Length
Byte 0: 	msgWriteProgram	1
Byte 1:	{program block}	35

Response Format (37 bytes)	Length
Byte 0:	0xC6	1
Byte 1:	Current Program Number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	35

Protocol 7 (Model 3600):
Message Format (37 bytes)	Length
Byte 0: 	msgWriteProgram	1
Byte 1:	{program block}	36

Response Format (38 bytes)	Length
Byte 0:	0xC6	1
Byte 1:	Current Program Number (0 – 5)	1
	0 = originally loaded remotely via USB
	1 = originally loaded from Flash #1
	…
	5 = originally loaded from Flash #5
Byte 2:	{program block}	36
[bookmark: _Toc136750052]
AMS_MSG_WRITE_FLASH_PROGRAM
Transmits a complete program of settings to the instrument and saves it to a program slot in the onboard flash memory with the name specified, without altering the currently running program settings in active memory.
Note: this message requires remote control.
Protocol 5, 6 (Model 3500):
Message Format (up to 56 bytes)	Length
Byte 0: 	msgWriteFlashProgram	1
Byte 1:	Program Number (1 – 5)	1
Byte 2:	{program block}	35
Byte 37:	Program Name (string)	up to 19

Response Format (up to 56 bytes)	Length
Byte 0:	0xC4	1
Byte 1:	Program Number (1 – 5)	1
Byte 2:	{program block}	35
Byte 37:	Program Name (string)	up to 19

Protocol 7 (Model 3600):
Message Format (up to 57 bytes)	Length
Byte 0: 	msgWriteFlashProgram	1
Byte 1:	Program Number (1 – 5)	1
Byte 2:	{program block}	36
Byte 38:	Program Name (string)	up to 19

Response Format (up to 57 bytes)	Length
Byte 0:	0xC4	1
Byte 1:	Program Number (1 – 5)	1
Byte 2:	{program block}	36
Byte 38:	Program Name (string)	up to 19
[bookmark: _Toc136750053]
AMS_MSG_WRITE_INSTRUMENT_NAME
Transmits a new user assignable name for the instrument and saves it in the onboard flash memory.
Note: this message requires remote control.
Message Format (up to 20 bytes)	Length
Byte 0: 	msgWriteInstrumentName	1
Byte 1:	Instrument Name (string)	up to 19

Response Format (up to 20 bytes)	Length
Byte 0:	0xAD	1
Byte 1:	Instrument Name (string)	up to 19
[bookmark: _Toc136750054]
{program block}
The program block is the standard layout for quickly transmitting all of the settings generally used to configure the amplifier for use.
Note: The byte references used in this table are relative to the beginning of the program block, not the message containing it.
Protocol 5, 6 (Model 3500):
Program Block Format (35 bytes)	Length
Byte 0:	{channel data} for Channel 1	2
Byte 2:	{channel data} for Channel 2	2
Byte 4:	{channel data} for Channel 3	2
Byte 6:	{channel data} for Channel 4	2
Byte 8:	{channel data} for Channel 5	2
Byte 10:	{channel data} for Channel 6	2
Byte 12:	{channel data} for Channel 7	2
Byte 14:	{channel data} for Channel 8	2
Byte 16:	{channel data} for Channel 9	2
Byte 18:	{channel data} for Channel 10	2
Byte 20:	{channel data} for Channel 11	2
Byte 22:	{channel data} for Channel 12	2
Byte 24:	{channel data} for Channel 13	2
Byte 26:	{channel data} for Channel 14	2
Byte 28:	{channel data} for Channel 15	2
Byte 30:	{channel data} for Channel 16	2
Byte 32:	Monitor A (0 – 15)	1
Byte 33:	Monitor B (0 – 15)	1
Byte 34:	{global bits}	1

Protocol 7 (Model 3600):
Program Block Format (36 bytes)	Length
Byte 0:	{channel data} for Channel 1	2
Byte 2:	{channel data} for Channel 2	2
Byte 4:	{channel data} for Channel 3	2
Byte 6:	{channel data} for Channel 4	2
Byte 8:	{channel data} for Channel 5	2
Byte 10:	{channel data} for Channel 6	2
Byte 12:	{channel data} for Channel 7	2
Byte 14:	{channel data} for Channel 8	2
Byte 16:	{channel data} for Channel 9	2
Byte 18:	{channel data} for Channel 10	2
Byte 20:	{channel data} for Channel 11	2
Byte 22:	{channel data} for Channel 12	2
Byte 24:	{channel data} for Channel 13	2
Byte 26:	{channel data} for Channel 14	2
Byte 28:	{channel data} for Channel 15	2
Byte 30:	{channel data} for Channel 16	2
Byte 32:	Monitor A (0 – 15)	1
Byte 33:	Monitor B (0 – 15)	1
Byte 34:	{global bits}	1
Byte 35:	{global reference}	1

[bookmark: _Toc136750055]
{channel data}
The channel data consists of 2 bytes which completely describe the settings for a single channel. The High Pass Filter, Low Pass Filter, and Gain settings are transmitted as values which can be referenced on the following tables to find the actual settings that should displayed for the corresponding value.
	Byte	Mask	Description	# of Bits
	0	0x80	Notch Filter	1 = On	1
				0 = Off

	0	0x70	High Pass Filter	3
	0	0x0E	Low Pass Filter	3
	0	0x01	Reserved (must be 0)	1

	1	0x80	Reference	1 = Common Bus	1
				0 = Channel Reference (Model 3500)
				0 = Ground (Model 3600)

	1	0x60	Mode	00 = Off	2
				01 = Record
				10 = Stimulate

	1	0x1E	Gain	4
	1	0x01	Reserved (must be 0)	1

The following chart lists the settings that correspond to the values transmitted in the channel data block under the standard production configuration of the hardware. Customized instruments may implement different settings for the data values. Detailed information regarding specific customized units can be obtained through the {hardware config block}. The High Pass and Low Pass Filters support 8 settings (data values 0 – 7) and the Gain supports either 11 or 13 settings (data values 0 – 10 or 0 – 12).
				Protocol 5, 6	Protocol 7
	Value	High Pass Setting	Low Pass Setting	Gain Setting	Gain Setting
	0	0.3 Hz	100 Hz	2	10
	1	1 Hz	300 Hz	4	20
	2	3 Hz	500 Hz	10	50
	3	10 Hz	1 kHz	20	100
	4	30 Hz	3 kHz	50	200
	5	100 Hz	5 kHz	100	500
	6	300 Hz	10 kHz	200	1k
	7	500 Hz	20 kHz	500	2k
	8	-	-	1k	5k
	9	-	-	2k	10k
	10	-	-	5k	20k
	11	-	-	10k	-
	12	-	-	20k	-
[bookmark: _Toc136750056]
{global bits}
This byte contains various settings that are global to the amplifier rather than specific to a particular channel.
	Byte	Mask	Description	# of Bits
	0	0x80	Stimulation Input for Ch 9-16	1 = Stim 1 (joined)	1
			(Model 3500)	0 = Stim 2 (separate)

			Stimulation Source	0 = Stim 1
			(Model 3600)	1 = Stim 2

	0	0x40	Common Bus	1 = Amplifier GND	1
			(Model 3500 only)	0 = External BNC

	0	0x20	Reserved (must be 0)	1

	0	0x18	Calibration Signal	00 = 1000 mV p-p	2
				01 = 100 mV p-p
				10 = 10 mV p-p
				11 = 1 mV p-p

	0	0x04	Reserved (must be 0)	1

	0	0x02	Calibration Signal	1 = On	1
				0 = Off

	0	0x01	Reserved (must be 0)	1
[bookmark: _Toc136750057]
{global reference}
This byte contains the channel selection to be used as a reference signal for the (-) Input Bus.
	Byte	Mask	Description	# of Bits
	0	0xE0	Reserved (must be 0)	3

	0	0x1F	Reference Signal	0x00 = Channel 1	5
				…
				0x0F = Channel 16
				0x10 = Reference Input

[bookmark: _Toc136750058]
{data offset}
This table lists the data offsets which can be used to set individual values on the instrument. Additional information regarding valid values and their corresponding settings can be found under {channel data} earlier in this section.
		Min	Max
	Offset	Value	Value	Description	
	0	0	7	High Pass Filter – Channel 1
	…	…	…	…
	15	0	7	High Pass Filter – Channel 16

	16	0	7	Low Pass Filter – Channel 1
	…	…	…	…
	31	0	7	Low Pass Filter – Channel 16

	32	0	12	Gain – Channel 1
	…	…	…	…
	47	0	12	Gain – Channel 16

	48	0	2	Mode – Channel 1
	…	…	…	…
	63	0	2	Mode – Channel 16

	64	0	15	Monitor A
	65	0	15	Monitor B
	66	0	3	Calibration Gain

	67	0	1	Common Bus	1 = Amplifier GND
					0 = External BNC

	68	-	-	Common Connection Bitmap for Ch 2 – 8
				{value} & 0x02 – Ch 2
				…
				{value} & 0x80 – Ch 8

	69	-	-	Common Connection Bitmap for Ch 10 – 16
				{value} & 0x02 – Ch 10
				…
				{value} & 0x80 – Ch 16

[bookmark: OLE_LINK1]	70	-	-	Notch Filter Bitmap for Ch 2 – 8
				{value} & 0x02 – Ch 2
				…
				{value} & 0x80 – Ch 8

	71	-	-	Notch Filter Bitmap for Ch 10 – 16
				{value} & 0x02 – Ch 10
				…
				{value} & 0x80 – Ch 16

	72	0	1	Stimulation Input for Ch 9-16	1 = Stim 1
					0 = Stim 2

	73	0	1	Calibration Signal	1 = On
					0 = Off

	74	-	-	Transmit Bitmap for Ch 1 and 9
				{value} & 0x04 – Ch 1 Common Connection
				{value} & 0x08 – Ch 9 Common Connection
				{value} & 0x10 – Ch 1 Notch Filter
				{value} & 0x20 – Ch 9 Notch Filter

The Common Connection bitmaps use a 1 to indicate the channel is connected to the Common Reference Bus and a 0 to indicate the channel uses its individual reference (Model 3500) or Ground (Model 3600).

The Notch Filter bitmaps use a 1 to indicate the Notch Filter is on, and a 0 to indicate it is off.
[bookmark: _Toc136750059]
{hardware config block}
The hardware configuration block provides details regarding any hardware modifications made to the instrument. This information is sufficient to present a customized user interface that accurately represents the capabilities present in the hardware.
The current value for Layout Revision (Byte 0) is 0x01, which represents the data schema detailed in the following table. When a value of 0x00 is received for Configuration Code (Byte 1), the standard production values for Filter and Gain options should be used and the content of the remaining bytes in this message are undefined.

Hardware Config Block Format (994 bytes)	Length
Byte 0:	Layout Revision	1
Byte 1:	Configuration Code	1
	0 = standard production hardware
	1 = custom configuration

Byte 2:	Reserved	40
Byte 42:	{config value} Calibration Gain Setting 0	2
Byte 44:	{config value} Calibration Gain Setting 1	2
Byte 46:	{config value} Calibration Gain Setting 2	2
Byte 48:	{config value} Calibration Gain Setting 3	2
Byte 50:	{channel config block} for Channel 1	59
Byte 109:	{channel config block} for Channel 2	59
Byte 168:	{channel config block} for Channel 3	59
Byte 227:	{channel config block} for Channel 4	59
Byte 286:	{channel config block} for Channel 5	59
Byte 345:	{channel config block} for Channel 6	59
Byte 404:	{channel config block} for Channel 7	59
Byte 463:	{channel config block} for Channel 8	59
Byte 522:	{channel config block} for Channel 9	59
Byte 581:	{channel config block} for Channel 10	59
Byte 640:	{channel config block} for Channel 11	59
Byte 699:	{channel config block} for Channel 12	59
Byte 758:	{channel config block} for Channel 13	59
Byte 817:	{channel config block} for Channel 14	59
Byte 876:	{channel config block} for Channel 15	59
Byte 935:	{channel config block} for Channel 16	59
[bookmark: _Toc136750060]
{channel config block}
Channel Config Block Format (59 bytes)	Length
Byte 0:	Channel Number (0 – 15)	1
Byte 1:	{config value} High Pass Setting 0	2
…	…	…
Byte 15:	{config value} High Pass Setting 7	2
Byte 17:	{config value} Low Pass Setting 0	2
…	…	…
Byte 31:	{config value} Low Pass Setting 7	2
Byte 33:	{config value} Gain Setting 0	2
…	…	…
Byte 57:	{config value} Gain Setting 12	2

[bookmark: _Toc136750061]{config value}
Each config values uses 2 bytes to encode a floating point value. To construct the final value, use the formula M * 10 ^ E where M is the mantissa encoded in byte 0 and E is the exponent encoded in byte 1.
	Byte	Mask	Description	# of Bits
	0	0x80	Reserved (must be 0)	1

	0	0x7F	mantissa (must be in range 1 – 99)	7

	1	0x80	Reserved (must be 0)	1

	1	0x40	1 = negative exponent	1
			0 = positive exponent	

	1	0x3F	exponent	6
[bookmark: _Toc107119850][bookmark: _Toc136750062]
Status Codes
The following table contains the possible status codes returned by the library and a brief description of their meaning. For future compatibility, any return value other than AMS_STATUS_OK should be considered to indicate a warning or error condition.

	Defined Constant
	Description

	AMS_STATUS_OK
	The operation succeeded.

	AMS_STATUS_INVALID_HANDLE
	The device handle did not reference an open device.

	AMS_STATUS_DEVICE_NOT_FOUND
	No devices are attached to the system.

	AMS_STATUS_IO_ERROR
	The library was unable to send a message to the device or the response from the device was not properly formatted.

	AMS_STATUS_INSUFFICIENT_RESOURCES
	This error commonly indicates a failed attempt to allocate memory.

	AMS_STATUS_INVALID_PARAMETER
	A parameter passed to a function was NULL or was out of range.

	AMS_STATUS_OTHER_ERROR
	The operation failed due to an unspecified error.

	AMS_STATUS_DLL_NOT_FOUND
	One or more USB driver library components could not be loaded.

	AMS_STATUS_THREADING_ERROR
	The library was unable to synchronize with other concurrent instances of the library, or it was unable to configure a timer to wait for a message response.

	AMS_STATUS_INVALID_MESSAGE_VERB
	The command specified for the message is not supported.

	AMS_STATUS_INVALID_PROTOCOL
	The version of the communications protocol supported by the hardware device is not compatible with this version of the library.

	AMS_STATUS_IO_TIMEOUT
	The device did not respond to the message during the allotted time.

	AMS_STATUS_NOT_IN_CONTROL
	The message was not accepted by the device because the device is currently under front panel LCD touch screen control.

	AMS_STATUS_NO_RESPONSE
	The response received from the device was invalid or incomplete.

[bookmark: _Toc208641189][bookmark: _Toc376267196]Revision History

0.1 First Revision

