Model 3500

16-Channel Extracellular Differential AC Amplifier

and

Model 3600

16-Channel Microelectrode Amplifier

Labview Interface Source Code
Version 0.1
Table of Contents

1Table of Contents

2Introduction

3Main.vi

4Available Messages

4AMS_MSG_LOAD_FLASH_PROGRAM

5AMS_MSG_READ_ACTIVE_PROGRAM

5AMS_MSG_READ_FIRMWARE_VERSION

6AMS_MSG_READ_FLASH_NAMES

6AMS_MSG_READ_FLASH_PROGRAM

7AMS_MSG_READ_HARDWARE_CONFIG

7AMS_MSG_READ_INSTRUMENT_NAME

7AMS_MSG_READ_PROTOCOL

8AMS_MSG_READ_SERIAL_NUMBER

8AMS_MSG_READ_STATUS

9AMS_MSG_SAVE_ACTIVE_TO_FLASH

10AMS_MSG_TAKE_CONTROL

10AMS_MSG_WRITE_ACTIVE_DATA_VALUE

11AMS_MSG_WRITE_ACTIVE_PROGRAM

12AMS_MSG_WRITE_FLASH_PROGRAM

13AMS_MSG_WRITE_INSTRUMENT_NAME

14{program block}

16{channel data}

17{global bits}

18{global reference}

19{data offset}

21{hardware config block}

22{channel config block}

22{config value}

Introduction

A-M Systems Models 3500 and 3600 functions are set with commands sent from the front panel or from a computer over the USB bus. Computer communication relies upon USB drivers and libraries provided by the manufacturer of the USB chipset used in the instrument. The current version of the hardware utilizes a chipset and drivers from Future Technology Devices International, Ltd. (FTDI). FTDI has provided Labview Virtual Instruments (VI’s) that enable passing functions from the computer to A-M Systems instrument. FTDI vi’s require FTDI’s D2xx drivers to be installed on the computer. Current drivers can be downloaded from FTDI’s website (http://www.ftdichip.com/Drivers/D2XX.htm) .
This document briefly describes the VI’s written by A-M Systems that utilize FTDI’s VI’s to communicate with the instrument, and is divided into three sections. The first section covers the use of the Main VI giving an overview of instrument communication. The second section describes the subVI’s and individual commands to the instrument. The last section describes the binary command messages necessary for setting the functions of the instrument using the instruments available messages. An accompanying document from FTDI (D2XX_Programmer's_Guide.pdf) explains each of the FTDI functions that are implemented in the FT_VI’s..
Files

1. Model 3XXX Labview Source Code.doc
This document.

2. Main.vi
The main program and user interface

3. D2XX_Programmer’s_Guide.pdf

Users guide to all of the FTDI functions in the D2XX_Functions folder

4. AMSAmpls.lvproj, .lvlps .aliases

The project files for this applications
5. D2XX_Functions_7.0 folder

This folder contains sub vi’s from FTDI for communicating with the instrument

6. Controls Folder

This folder contains three controls used in the user interface

7. SubVi’s folder

This folder includes all of the following sub vi’s that support Main.vi:

AMS_InstName.vi , AMS_ReadFlashNames.vi, CreateHWarray.vi, FTDIerrorHandle.vi, FTDISendRecBytes.vi, FTDISetPort.vi, GetFTDIHandle.vi, Load3xData.vi, MantExp2str.vi, ParseHW3xxx.vi, ParsePB3xx.vi
Main.vi
Communication with the instrument needs to follow these basic steps:

1. Run FT_Create_Device_Info_List.vi which returns the number of FTDI devices
2. Run FT_Get_Device_Info_List.vi which returns the description for each FTDI device attached to the computer.

3. Run FT_Open_Device_By_Serial_Number.vi which returns a handle identifier for the instrument
4. Run FTDISetPort.vi which sets port communication with the instrument.
5. Series of commands can be sent back and forth to the instrument now
6. Repeat step 5 as needed.

7. Run FT_Close_Device.vi to close the handle to the instrument
Certain messages can only be transmitted to the instrument while the client application has control of the device, and will generate an error result if sent at any other time. The client application must send the AMS_MSG_TAKE_CONTROL message to take control of the instrument prior to sending any of these messages. While under remote control, the LCD screen on the front panel of the instrument indicates that it is under remote control, and allows the user to take back control at the front panel at any time. Labview should periodically poll the instrument using the AMS_MSG_READ_STATUS message to determine whether the client application has been forced to give up control of the instrument via user interaction with the LCD touch screen on the front panel. Labview may send the AMS_MSG_TAKE_CONTROL message to take control of the instrument as often as necessary to accomplish its tasks.

The Front Panel
The front panel is divided into two major sections. On the left is a typical user interface that can control the Model 3500 or 3600. On the right is a collection of controls that implement specific messages, actions, or display instrument responses. Most everything on the front panel is controlled on the block diagram with the Event Structure: value change object. A few FTDI preliminaries and initializations happen outside of this event structure.
Instrument User Interface
Once the VI is run the user interface disables the 3500 and 3600 settings until an instrument is selected from the AMS Amplifier Serial# listbox. This listbox is filled by using FT_Create_Device_Info_List.vi then reading through FT_Get_Device_Info_Detail.vi for the list of serial numbers that have either “Model 3500” or “Model 3600” for its descriptions. If no serial numbers show up in the list make sure an instrument has been connected to the computer turned on and the FTDI drivers have been installed.

The block diagrams Event Handler will respond to “AMS Amplifier Serial#”:value change and it will try to establish a USB handle with the instrument using GetFTDIHandle.vi and if successful it will set the instruments serial port parameters with GTDISetPort.vi. All communication beyond this point uses FTDISendRecBytes.vi to send AMS_MSG_ messages. FTDISendRecBytes.vi will be described in more detail in the second section of this document, but the essentials are that it requires the USB handle and takes a AMS_MSG message and any required Data in the form of an array of bytes and it will reply with a byte array response and the byte array size.
The first AMS_MSG to be sent is AMS_MSG_TAKE_CONTROL, which disables the LCD display and makes the computer the primary device controlling the instrument. Then AMS_MSG_READ_INSTRUMENT_NAME will be sent within AMS_InstName.vi to get the connected instrument name. Finally the Display Program listbox will be filled with the Names using AMS_MSG_READ_FLASH_NAMES within AMS_ReadFlashNames.vi.
The actively running program on the instrument will be automatically selected in the Display Program listbox triggering the“Dislay Program”:Value change event. This will populate the Channels cluster and the Globals cluster with settings defined within the flash slot without running these settings on the instrument. Pressing the Run On Instrument button will make the selected flash slot the active running program. The Save On Instrument button will save the active program to the Slot number selected with the name in the New Name text box. The Stop button will stop the VI from running but will not turn off the instrument or change its settings.
The Channels Cluster displays each channels settings on the instrument. Changing any of these settings will trigger the “Channels”: Value change and send the new value to the instrument with AMS_MSG_WRITE_ACTIVE_DATA_VALUE, the data offet of the setting, and the position of the setting. The data offset is defined in the Data Formats-data offset section of this document. The position of the setting is the index number of a ring control, or the binary value of a Boolean control.
The Globals Cluster displays the instrument settings that affect all, or no channels. Changing any of these settings will trigger the “Globals”: Value change and send the new value to the instrument with AMS_MSG_WRITE_ACTIVE_DATA_VALUE, the data offet of the setting, and the position of the setting.
Individual Commands

The far right of the Front panel contains a bunch of uncontrolled controls and indicators that can be used to address the instrument directly. Once the front panel is run the defaults and FTDI initialization happens populating the Device Info List with FTDI devices connected to the computer. To run any of the individual controls, an AMS Amplifier Serial # will need to be selected in the main user interface.
Handle

Once a serial number is selected in the AMS Amplifier Serial# listbox it will create a new handle number and fill the Handle Indicator.

Index

Once a serial number is selected in the AMS Amplifier Serial# listbox it will take the listbox position of the serial number and place it in the Index indicator

Read Active Program

This control will read the currently active settings running on the instrument and populate the Channels cluster with their settings. This process uses three sub vi’s: FTDISendRecBytes.vi, ParsePB3xx.vi, and Load3xData.vi . FTDISendRecByte has inputs of Read_Active_Program(0xB0) and a delay of 50ms. The output of FTDISendRecBytes is a byte array that is put in the indicator Read Data and the next vi. ParsePB3xx.vi has the input of the binary read data, and outputs an array decimal data with the instruments data offets as the index to the array. Load3xData.vi takes the decimal data array as an input, along with the instrument description string, the active program data array, and the reference’s to the front panel.
Read Firmware#

This control will read the current firmware numbers from the instrument. The FTDISendRecBytes.vi vi will do this with the input of Read_Firware_Version(0xA4). The output of FTDISendRecBytes is a byte array that is put in the indicator Read Data. This data is separated and put into the Proc# and LCD# indicators.
Read Hardware Config

This control reads the hardware configuration stored on the instrument. This configuration is only used when there are customizations to the instrument that modify the standard settings of the filters or gain. If there are no customizations the ConfigCode will be zero and the filter and gain settings will match the ring values in the channels cluster. The FTDISendRecBytes.vi vi will read the configuration with the input of Read_Hardware_Config(0xAA). The output of FTDISendRecBytes is a byte array that is put in the indicator Read Data. The byte array is the input to the subvi ParseHW3xxx.vi which seperates the byte array into a two dimensional array of setting names and their actual value. This array is put in the indicator HConfig.
Read Inst Name

This control will read instrument Name. The FTDISendRecBytes.vi vi will do this with the input of Read_Instrument_Name(0xA6). The output of FTDISendRecBytes is a byte array that is put in the indicator Read Data. This data is separated and put into the string indicator Instrument Name.
Read Protocol#

This control will read the communication protocol number. As more instruments are added or commands are added to the instrument the protocol will change. The number as of writing the document is 6. The FTDISendRecBytes.vi vi will do this with the input of Read_Protocol (0xA0). The output of FTDISendRecBytes is a byte array that is put in the indicator Read Data. This data is separated and put into the indicator Protocol#.

Read Serial#

This control will read instrument serial number. The FTDISendRecBytes.vi vi will do this with the input of Read_Serial_Number(0xA2). The output of FTDISendRecBytes is a byte array that is put in the indicator Read Data. This data is separated and put into the string indicator Serial#.

Write Inst Name

This control is a good example of a basic write function to the instrument. It will write a new instrument name specified in the string control Write Name. The FTDISendRecBytes.vi requires the input of Write_Instrument_Name(0xAC) and the new instrument name string in the form of a ascii coded byte array, followed by the number 0 (for the null character). The output of this vi will give the instrument name back which is displayed in the Instrument name indicator.
Read Status
This control will read weather the instrument is controlled by the touch screen or by the computer. It will also read if there is TTl control of the instrument. . The FTDISendRecBytes.vi vi will do this with the input of Read_Status(0xBA). The output of FTDISendRecBytes is a byte array that is put in the indicators Control and TTL.
Take Control

Take control is the command necessary to give certain commands to the instrument. It uses FTDISendRecBytes.vi to send the Take_Control(0xB9) command.
Command-Send/Receive

This series of controls are used to send raw commands to the instrument with free format byte arrays, but still limited to the available messages. The Command ring control is used to set the desired message, while the Send Data byte array as the input to the FTDISendRecBytes.vi vi. The output of the vi will be put in the Read Data byte array indicator.
Main block Diagram

The main program has an initialization flat sequence on the left that feeds into the FTDIerror Handler. The FTDI initialization of the USB is carried out by the sub vi’s provided by FTDI and the FTDI error Handler vi. The appropriate serial numbers are found using the two case statements that use the error cluster as a sequence order.
All the rest of the commands are done within the while loop which include the Event handler. Each event is described above in the Front panel section except for the standard timeout, panel close, and stop events.

Sub VI’s and peripheral commands

AMS_InstName.vi

AMS_InstName is a vi that given a instrument handle will return the name of the instrument using the FTDISendRecBytes.vi vi. It sets the delay to 5 and takes the returning byte array takes off the first three bytes and the last four bytes to get the byte array representation of the string name, which it then converts to a string and returns it to any calling vi’s.
AMS_ReadFlashNames.vi

AMS_ReadFlashNames will take an instrument handle and return the flash names for that instrument. It uses FTDISendRecBytes.vi to request the byte array of names then loops through the returned array for the null terminated strings. It uses a case statement to verify that a string has been found because search 1D array will return -1 if it can not find the null termination.
CreateHWarray.vi

CreateHWarray will create a blank 2 dimensional array with the labels for the hardware variables in the first column of the array.
FTDIerrorHandle.vi

FTDIerrorHandle takes the FT_status returned from any FTDI vi and translates the error into a string using FT_Status_Explanation.vi and puts this status into an error cluster.
FTDISendRecBytes.vi

FTDISendRecBytes is the main vi used to communicate with the instrument. It has several inputs and outputs that may be required depending on the message trying to be sent. The inputs are: Delay, Handle, Verb, and Buffer. The delay will default to 0, is specified in milliseconds and will need to be longer depending on how long of a message is sent. The Handle is the specific handle to the instrument. The verb is the specific message desired (listed in available messages section). The Buffer is required for any writing message and is in the form of a byte array.
The vi will take the message and use FT_Write_Byte_Data.vi to send an assembled data array of the verb and buffer to the instrument. If there was no error it will then wait for data to be available to be read on the USB bus using FT_Get_Queue_Status.vi. Once some data is available it will continue to read data from the usb bus until the termination byte of 0x81 is found. It will then return this byte array as Read Data and pass through the FT_Status and Byte array size.
FTDISetPort.vi

FTDISetPort goes through a series of FT_vi’s to set the serial port communication settings necessary for the instrument to communicate over the USB bus. These settings include baud rate, parity, flow control, and timeouts for serial communication.
GetFTDIHandle.vi

GetFTDIHandle goes through a series of tests in order to safely get a handle to the instrument number indicated by the index within the device info list array. If the handle already exists it will release the handle for that device. If the handle does not exist it will instantiate the handle so long as it receives no FT_Status error, and there is a valid serial number.
Load3xData.vi

Load3xData will populate the channels cluster and the global clusters from the main vi. It takes the program block and seperates out each setting and sets the particular cluster control to the value derived from the program block. See the Program block in the Data Formats section. It repeats the same process for each channel using a for loop, and individually sets each control in the globals cluster.
MantExp2str.vi

MantExp2str will take the numeric representation of a mantissa and an exponent used in the Program block (See Data Formats) and defined in config value (see Data Formats) and convert the numeric representation to a string representation of the number. For example a 1,3 would give the number string “1000.0”.
ParseHW3xxx.vi

ParseHW3xxx takes the byte array returned from Read Hardware Config and puts it into the 2 dimensional Hardware configure Array (see Data Formats)

.
ParsePB3xxx.vi

ParsePB3xxx takes the byte array returned from Read Flash Program or Read Active Program and converts it into a decimal array with indexes corresponding to the instruments data offsets (see Data Formats)
Available Messages

All messages sent to a Model 3500 or Model 3600 instrument include a message verb defining the action to be performed, and any additional data needed for execution of the message. Responses from the instrument are delivered beginning with a matching response verb to indicate the action performed, followed by any additional data sent with the response message.

Note: Byte sequences enclosed in braces such as {program block} are defined in detail in the Data Formats section. Unless otherwise noted, all strings are variable in length and consist of up to 18 ASCII characters (1 byte each) followed by a required NULL terminator.

AMS_MSG_LOAD_FLASH_PROGRAM

Loads one of the programs saved in onboard flash memory into active memory, replacing all of the current settings with those in the program being loaded. This message is identical to selecting Load from the Menu on the front panel LCD touch screen on the instrument.

Note: this message requires remote control.

Message Format (2 bytes)
Length

Byte 0:
0xB2
1

Byte 1:
program number to load (1 – 5)
1

Model 3500:

Response Format (37 bytes)
Length

Byte 0:
0xC2
1

Byte 1:
currently program number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
35

 Model 3600:

Response Format (38 bytes)
Length

Byte 0:
0xC2
1

Byte 1:
currently program number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
36

AMS_MSG_READ_ACTIVE_PROGRAM

Requests the settings for the currently running program.

Message Format (1 byte)
Length

Byte 0:
0xB0
1

Model 3500:

Response Format (37 bytes)
Length

Byte 0:
0xC0
1

Byte 1:
Current Program Number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
35

Model 3600:

Response Format (38 bytes)
Length

Byte 0:
0xC0
1

Byte 1:
Current Program Number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
36

AMS_MSG_READ_FIRMWARE_VERSION

Requests the build numbers for the internal processor firmware and the front panel LCD touch screen display firmware.

Message Format (1 byte)
Length

Byte 0:
0xA4
1

Response Format (3 bytes)
Length

Byte 0:
0xA5
1

Byte 1:
Processor build number
1

Byte 2:
LCD build number
1

AMS_MSG_READ_FLASH_NAMES

Requests the user assigned program names of the 5 program slots available in onboard flash memory.

Message Format (1 byte)
Length

Byte 0:
0xB7
1

Response Format (up to 96 bytes)
Length

Byte 0:
0xC7
1

Byte 1:
Program #1 Name (string)
up to 19

Byte _:
Program #2 Name (string)
up to 19

Byte _:
Program #3 Name (string)
up to 19

Byte _:
Program #4 Name (string)
up to 19

Byte _:
Program #5 Name (string)
up to 19

AMS_MSG_READ_FLASH_PROGRAM

Requests the program saved in one of the onboard flash memory slots without altering the program currently running in active memory.

Message Format (2 bytes)
Length

Byte 0:
0xB1
1

Byte 1:
Program Number (1 – 5)
1

Model 3500:

Response Format (up to 56 bytes)
Length

Byte 0:
0xC1
1

Byte 1:
Program Number (1 – 5)
1

Byte 2:
{program block}
35

Byte 37:
Program Name (string)
up to 19

Model 3600:

Response Format (up to 57 bytes)
Length

Byte 0:
0xC1
1

Byte 1:
Program Number (1 – 5)
1

Byte 2:
{program block}
36

Byte 38:
Program Name (string)
up to 19

AMS_MSG_READ_HARDWARE_CONFIG

Requests the hardware configuration data, which fully describes any hardware customizations present in the instrument.

Message Format (1 byte)
Length

Byte 0:
0xAA
1

Response Format (1154 bytes)
Length

Byte 0:
0xAB
1

Byte 1:
{hardware config block}
994

Byte 995:
Reserved
159

AMS_MSG_READ_INSTRUMENT_NAME

Requests the user assigned instrument name, useful for distinguishing multiple instruments being controlled by a single client application.

Message Format (1 byte)
Length

Byte 0:
0xA6
1

Response Format (up to 20 bytes)
Length

Byte 0:
0xA7
1

Byte 1:
Instrument Name (string)
up to 19

AMS_MSG_READ_PROTOCOL

Requests the communication protocol version supported by the instrument.

Message Format (1 byte)
Length

Byte 0:
0xA0
1

Response Format (2 bytes)
Length

Byte 0:
0xA1
1

Byte 1:
Protocol Version
1

AMS_MSG_READ_SERIAL_NUMBER

Requests the serial number of the instrument.

Message Format (1 byte)
Length

Byte 0:
0xA2
1

Response Format (up to 10 bytes)
Length

Byte 0:
0xA3
1

Byte 1:
Serial Number (string – up to 8 characters)
up to 9

AMS_MSG_READ_STATUS

Requests the current control status of the instrument.

Message Format (1 byte)
Length

Byte 0:
0xBA
1

Response Format (3 bytes)
Length

Byte 0:
0xCA
1

Byte 1:
0 = Font panel LCD touch screen control
1

1 = Computer control via USB

Byte 2:
0 = TTL Control Off
1

1 = TTL Control On

AMS_MSG_SAVE_ACTIVE_TO_FLASH

Saves the program currently running in active memory to one of the program slots in the onboard flash memory and assigns it the name specified. This message is identical to selecting Save from the Menu on the front panel LCD touch screen display.

Note: this message requires remote control.

Message Format (up to 21 bytes)
Length

Byte 0:
0xB3
1

Byte 0:
Program Number (1 – 5)
1

Byte 1:
Program Name (string)
up to 19

Model 3500:
Response Format (up to 56 bytes)
Length

Byte 0:
0xC3
1

Byte 1:
Current Program Number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
35

Byte 37:
Program Name (string)
up to 19

Model 3600:
Response Format (up to 57 bytes)
Length

Byte 0:
0xC3
1

Byte 1:
Current Program Number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
36

Byte 38:
Program Name (string)
up to 19

AMS_MSG_TAKE_CONTROL

Commands the instrument to accept program settings modifications from the client application and causes the front panel LCD touch screen display to indicate that the instrument is under remote control.

Message Format (1 byte)
Length

Byte 0:
0xB9
1

Response Format (2 bytes)
Length

Byte 0:
0xC9
1

Byte 0:
0 = TTL Control Off
1

1 = TTL Control On

AMS_MSG_WRITE_ACTIVE_DATA_VALUE

Modifies a single setting in the currently running program.

Note: this message requires remote control.

Message Format (3 bytes)
Length

Byte 0:
0xB5
1

Byte 1:
{data offset}
1

Byte 2:
value
1

Response Format (3 bytes)
Length

Byte 0:
0xC5
1

Byte 1:
{data offset}
1

Byte 2:
value
1

AMS_MSG_WRITE_ACTIVE_PROGRAM

Transmits a complete program of settings to the instrument and loads it as the currently running program. The current program number is set to 0 to indicate that the running settings were loaded remotely.

Note: this message requires remote control.

Model 3500:

Message Format (36 bytes)
Length

Byte 0:
0xB6
1

Byte 1:
{program block}
35

Response Format (37 bytes)
Length

Byte 0:
0xC6
1

Byte 1:
Current Program Number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
35

Model 3600:

Message Format (37 bytes)
Length

Byte 0:
0xB6
1

Byte 1:
{program block}
36

Response Format (38 bytes)
Length

Byte 0:
0xC6
1

Byte 1:
Current Program Number (0 – 5)
1

0 = originally loaded remotely via USB

1 = originally loaded from Flash #1

…

5 = originally loaded from Flash #5

Byte 2:
{program block}
36

AMS_MSG_WRITE_FLASH_PROGRAM

Transmits a complete program of settings to the instrument and saves it to a program slot in the onboard flash memory with the name specified, without altering the currently running program settings in active memory.

Note: this message requires remote control.

Model 3500:

Message Format (up to 56 bytes)
Length

Byte 0:
0xB4
1

Byte 1:
Program Number (1 – 5)
1

Byte 2:
{program block}
35

Byte 37:
Program Name (string)
up to 19

Response Format (up to 56 bytes)
Length

Byte 0:
0xC4
1

Byte 1:
Program Number (1 – 5)
1

Byte 2:
{program block}
35

Byte 37:
Program Name (string)
up to 19

Model 3600:

Message Format (up to 57 bytes)
Length

Byte 0:
0xB4
1

Byte 1:
Program Number (1 – 5)
1

Byte 2:
{program block}
36

Byte 38:
Program Name (string)
up to 19

Response Format (up to 57 bytes)
Length

Byte 0:
0xC4
1

Byte 1:
Program Number (1 – 5)
1

Byte 2:
{program block}
36

Byte 38:
Program Name (string)
up to 19

AMS_MSG_WRITE_INSTRUMENT_NAME

Transmits a new user assignable name for the instrument and saves it in the onboard flash memory.

Note: this message requires remote control.

Message Format (up to 20 bytes)
Length

Byte 0:
0xAC
1

Byte 1:
Instrument Name (string)
up to 19

Response Format (up to 20 bytes)
Length

Byte 0:
0xAD
1

Byte 1:
Instrument Name (string)
up to 19

Data Formats

{program block}

The program block is the standard layout for quickly transmitting all of the settings generally used to configure the amplifier for use.

Note: The byte references used in this table are relative to the beginning of the program block, not the message containing it.

Model 3500:
Program Block Format (35 bytes)
Length

Byte 0:
{channel data} for Channel 1
2

Byte 2:
{channel data} for Channel 2
2

Byte 4:
{channel data} for Channel 3
2

Byte 6:
{channel data} for Channel 4
2

Byte 8:
{channel data} for Channel 5
2

Byte 10:
{channel data} for Channel 6
2

Byte 12:
{channel data} for Channel 7
2

Byte 14:
{channel data} for Channel 8
2

Byte 16:
{channel data} for Channel 9
2

Byte 18:
{channel data} for Channel 10
2

Byte 20:
{channel data} for Channel 11
2

Byte 22:
{channel data} for Channel 12
2

Byte 24:
{channel data} for Channel 13
2

Byte 26:
{channel data} for Channel 14
2

Byte 28:
{channel data} for Channel 15
2

Byte 30:
{channel data} for Channel 16
2

Byte 32:
Monitor A (0 – 15)
1

Byte 33:
Monitor B (0 – 15)
1

Byte 34:
{global bits}
1

Model 3600:

Program Block Format (36 bytes)
Length

Byte 0:
{channel data} for Channel 1
2

Byte 2:
{channel data} for Channel 2
2

Byte 4:
{channel data} for Channel 3
2

Byte 6:
{channel data} for Channel 4
2

Byte 8:
{channel data} for Channel 5
2

Byte 10:
{channel data} for Channel 6
2

Byte 12:
{channel data} for Channel 7
2

Byte 14:
{channel data} for Channel 8
2

Byte 16:
{channel data} for Channel 9
2

Byte 18:
{channel data} for Channel 10
2

Byte 20:
{channel data} for Channel 11
2

Byte 22:
{channel data} for Channel 12
2

Byte 24:
{channel data} for Channel 13
2

Byte 26:
{channel data} for Channel 14
2

Byte 28:
{channel data} for Channel 15
2

Byte 30:
{channel data} for Channel 16
2

Byte 32:
Monitor A (0 – 15)
1

Byte 33:
Monitor B (0 – 15)
1

Byte 34:
{global bits}
1

Byte 35:
{global reference}
1

{channel data}

The channel data consists of 2 bytes which completely describe the settings for a single channel. The High Pass Filter, Low Pass Filter, and Gain settings are transmitted as values which can be referenced on the following tables to find the actual settings that should displayed for the corresponding value.

Byte
Mask
Description
of Bits

0
0x80
Notch Filter
1 = On
1

0 = Off

0
0x70
High Pass Filter
3

0
0x0E
Low Pass Filter
3

0
0x01
Reserved (must be 0)
1

1
0x80
Reference
1 = Common Bus
1

0 = Channel Reference (Model 3500)

0 = Ground (Model 3600)

1
0x60
Mode
00 = Off
2

01 = Record

10 = Stimulate

1
0x1E
Gain
4

1
0x01
Reserved (must be 0)
1

The following chart lists the settings that correspond to the values transmitted in the channel data block under the standard production configuration of the hardware. Customized instruments may implement different settings for the data values. Detailed information regarding specific customized units can be obtained through the {hardware config block}. The High Pass and Low Pass Filters support 8 settings (data values 0 – 7) and the Gain supports either 11 or 13 settings (data values 0 – 10 or 0 – 12).

3500
3600
Value
High Pass Setting
Low Pass Setting
Gain Setting
Gain Setting

0
0.3 Hz
100 Hz
2
10

1
1 Hz
300 Hz
4
20

2
3 Hz
500 Hz
10
50

3
10 Hz
1 kHz
20
100

4
30 Hz
3 kHz
50
200

5
100 Hz
5 kHz
100
500

6
300 Hz
10 kHz
200
1k

7
500 Hz
20 kHz
500
2k

8
-
-
1k
5k

9
-
-
2k
10k

10
-
-
5k
20k

11
-
-
10k
-

12
-
-
20k
-

{global bits}

This byte contains various settings that are global to the amplifier rather than specific to a particular channel.

Byte
Mask
Description
of Bits

0
0x80
Stimulation Input for Ch 9-16
1 = Stim 1 (joined)
1

(Model 3500)
0 = Stim 2 (separate)

Stimulation Source
0 = Stim 1

(Model 3600)
1 = Stim 2

0
0x40
Common Bus
1 = Amplifier GND
1

(Model 3500 only)
0 = External BNC

0
0x20
Reserved (must be 0)
1

0
0x18
Calibration Signal
00 = 1000 mV p-p
2

01 = 100 mV p-p

10 = 10 mV p-p

11 = 1 mV p-p

0
0x04
Reserved (must be 0)
1

0
0x02
Calibration Signal
1 = On
1

0 = Off

0
0x01
Reserved (must be 0)
1

{global reference}

This byte contains the channel selection to be used as a reference signal for the (-) Input Bus.

Byte
Mask
Description
of Bits

0
0xE0
Reserved (must be 0)
3

0
0x1F
Reference Signal
0x00 = Channel 1
5

…

0x0F = Channel 16

0x10 = Reference Input

{data offset}

This table lists the data offsets which can be used to set individual values on the instrument. Additional information regarding valid values and their corresponding settings can be found under {channel data} earlier in this section.

Min
Max

Offset
Value
Value
Description

0
0
7
High Pass Filter – Channel 1

…
…
…
…

15
0
7
High Pass Filter – Channel 16

16
0
7
Low Pass Filter – Channel 1

…
…
…
…

31
0
7
Low Pass Filter – Channel 16

32
0
12
Gain – Channel 1

…
…
…
…

47
0
12
Gain – Channel 16

48
0
2
Mode – Channel 1

…
…
…
…

63
0
2
Mode – Channel 16

64
0
15
Monitor A

65
0
15
Monitor B

66
0
3
Calibration Gain

67
0
1
Common Bus
1 = Amplifier GND

0 = External BNC

68
-
-
Common Connection Bitmap for Ch 2 – 8

{value} & 0x02 – Ch 2

…

{value} & 0x80 – Ch 8

69
-
-
Common Connection Bitmap for Ch 10 – 16

{value} & 0x02 – Ch 10

…

{value} & 0x80 – Ch 16

70
-
-
Notch Filter Bitmap for Ch 2 – 8

{value} & 0x02 – Ch 2

…

{value} & 0x80 – Ch 8

71
-
-
Notch Filter Bitmap for Ch 10 – 16

{value} & 0x02 – Ch 10

…

{value} & 0x80 – Ch 16

72
0
1
Stimulation Input for Ch 9-16
1 = Stim 1

0 = Stim 2

73
0
1
Calibration Signal
1 = On

0 = Off

74
-
-
Transmit Bitmap for Ch 1 and 9

{value} & 0x04 – Ch 1 Common Connection

{value} & 0x08 – Ch 9 Common Connection

{value} & 0x10 – Ch 1 Notch Filter

{value} & 0x20 – Ch 9 Notch Filter

The Common Connection bitmaps use a 1 to indicate the channel is connected to the Common Reference Bus and a 0 to indicate the channel uses its individual reference (Model 3500) or Ground (Model 3600).

The Notch Filter bitmaps use a 1 to indicate the Notch Filter is on, and a 0 to indicate it is off.

{hardware config block}

The hardware configuration block provides details regarding any hardware modifications made to the instrument. This information is sufficient to present a customized user interface that accurately represents the capabilities present in the hardware.

The current value for Layout Revision (Byte 0) is 0x01, which represents the data schema detailed in the following table. When a value of 0x00 is received for Configuration Code (Byte 1), the standard production values for Filter and Gain options should be used and the content of the remaining bytes in this message are undefined.

Hardware Config Block Format (994 bytes)
Length

Byte 0:
Layout Revision
1

Byte 1:
Configuration Code
1

0 = standard production hardware

1 = custom configuration

Byte 2:
Reserved
40

Byte 42:
{config value} Calibration Gain Setting 0
2

Byte 44:
{config value} Calibration Gain Setting 1
2

Byte 46:
{config value} Calibration Gain Setting 2
2

Byte 48:
{config value} Calibration Gain Setting 3
2

Byte 50:
{channel config block} for Channel 1
59

Byte 109:
{channel config block} for Channel 2
59

Byte 168:
{channel config block} for Channel 3
59

Byte 227:
{channel config block} for Channel 4
59

Byte 286:
{channel config block} for Channel 5
59

Byte 345:
{channel config block} for Channel 6
59

Byte 404:
{channel config block} for Channel 7
59

Byte 463:
{channel config block} for Channel 8
59

Byte 522:
{channel config block} for Channel 9
59

Byte 581:
{channel config block} for Channel 10
59

Byte 640:
{channel config block} for Channel 11
59

Byte 699:
{channel config block} for Channel 12
59

Byte 758:
{channel config block} for Channel 13
59

Byte 817:
{channel config block} for Channel 14
59

Byte 876:
{channel config block} for Channel 15
59

Byte 935:
{channel config block} for Channel 16
59

{channel config block}

Channel Config Block Format (59 bytes)
Length

Byte 0:
Channel Number (0 – 15)
1

Byte 1:
{config value} High Pass Setting 0
2

…
…
…

Byte 15:
{config value} High Pass Setting 7
2

Byte 17:
{config value} Low Pass Setting 0
2

…
…
…

Byte 31:
{config value} Low Pass Setting 7
2

Byte 33:
{config value} Gain Setting 0
2

…
…
…

Byte 57:
{config value} Gain Setting 12
2

{config value}

Each config values uses 2 bytes to encode a floating point value. To construct the final value, use the formula M * 10 ^ E where M is the mantissa encoded in byte 0 and E is the exponent encoded in byte 1.

Byte
Mask
Description
of Bits

0
0x80
Reserved (must be 0)
1

0
0x7F
mantissa (must be in range 1 – 99)
7

1
0x80
Reserved (must be 0)
1

1
0x40
1 = negative exponent
1

0 = positive exponent

1
0x3F
exponent
6

PAGE

