Model 3800
8 Channel Stimulator

Matlab Interface Source Code
Version 0.1
Table of Contents

1Table of Contents

3Introduction

4Files

4mainGUI.m

4makePanel.m

4processUserInput.m

4LoadPanel.m

5getAmpCommand.m, getListCommand.m, getTimeCommand.m files

5timeNum.m, trainNum.m, voltNum.m files

5WriteAMSFile.m and ReadAMSFile.m files

5libraries folder

5images folder

5Data Files folder

5Model3800BasicCommands.m

6AMS3800Interface_NET.dll

6closeInterface() as void

6GetAllChanVals() as Ams3800Channel

6Ams3800Channel:

7GetAllGlobals() as Ams3800Global

7Ams3800Global :

7GetAmpValue(Int32 ch, AMS_3800.IndexAmpControls cntr) as Int32

7IndexAmpControls:

7ChNumber:

8GetFlash(Int32 slot) as Boolean

8getInterface(String&, error_msg)

8GetListValue(Int32 ch, AMS_3800.IndexListControls cntr)

8IndexListControls:

9GetNameControl(AMS_3800.IndexNameControls cntr) as string

9IndexNameControls:

9GetNameIndicator(AMS_3800.IndexNameIndicators cntr) as string

9IndexNameIndicators:

9GetReply(Byte[] inBytes, Int32 retsize, Byte[]& outBytes) as boolean

10GetSiuIndicator(Int32 ch, AMS_3800.IndexSIUIndicators cntr) as Int32

10GetTimeValue(Int32 ch, AMS_3800.IndexTimeControls cntr) as double

10IndexTimeControls:

10IsCompInControl() as Boolean

10isConnected() as Boolean

11SetAmpValue(Int32 ch, AMS_3800.IndexAmpControls cntr, Int32 amp) as Int32

11IndexAmpControls:

11SetFlash(Int32 slot, String name)

11SetInstrInControl()

11SetListValue(Int32 ch, AMS_3800.IndexListControls cntr, Int32 value) As AmsErrors

11AMSerrors:

12SetNameControl(AMS_3800.IndexNameControls cntr, String Name) As AmsErrors

12SetTimeValue(Int32 ch, AMS_3800.IndexTimeControls cntr, Double time) As AmsErrors

Introduction

A-M Systems Models 3800 stimulator functions are set with commands sent from the front panel or from a computer over the USB bus. Computer communication relies upon USB drivers and libraries provided by A-M Systems, adapted from winusb from Microsoft corporation. Matlab is able to communicate though the drivers by utilizing the .NET DLL AMS3800Interface_NET.dll. The current version of the hardware utilizes a chipset from Freescale Semiconductor.
This document briefly describes the matlab files written by A-M Systems, and is divided into three sections. The first section covers the use of the Main VI giving an overview of instrument communication. The second section describes the submatlab files and individual commands to the instrument. The last section describes the AMS_3800 functions within AMS3800Interface_NET.dll and the instruments data structure.
Files

mainGUI.m
Creates the object to interface with the instrument using the required AMS3800Interface_NET.dll. It also creates the handles to the user interface, and makes sure the connection to the instrument is properly closed when exiting the user interface. The two global variables are my3800 and Channels. My3800 is the object that controls the instrument. Channels is a structure used to transfer bulk settings with all the instrument channel settings, and is globally linked to the .NET pass by reference object.
makePanel.m

Creates the toolbar, and loops through 8 channels to create each control for changing and viewing instrument setteings. Names for the control settings are stored in enumerations in the AMS3800Interface library and are read using Seystem.Enum.GetNames function.
The user interface is created using uitoolbar, uipushtool, uipanel, and uicontrols. The position of the controls are set using iteration and the vertAdj function. All controls are set to activate the processUserInput.m function.
processUserInput.m

Takes the object data from the active control and converts it to a usable format and will preform the required action depending on the control.

The user input is sent by these controls for each of the 8 channels:

'Status'

'Waveform'

'TriggerSource'
'SyncOutputSource'

'GateConnection'
'PulseDelay'

'PulseWidth'
 'PulseInterphase'

'PulsePeriod'

'TrainDelay'

'TrainWidth'
'TrainNum'

'TrainPeriod'

'PairedStart'

'PairedPulseDirection'
'PairedChange'

'StepStart'

'StepChange'

'Offset'
'Pulse1'

'Pulse2'

'Combo'

The controls for the toolbar are:

'Open file' , 'Save file',
'Enable' , 'Connect', 'Upload'
A change in a control will execute a set function for the instrument using the AMS3800Interface library. All new settings will be saved in the Channels global variable.
LoadPanel.m

Will use the values in the global variable Channels to update the user interface. It loops though all 22 setting in the 8 channels and populates the user interface.

getAmpCommand.m, getListCommand.m, getTimeCommand.m files

Functions that return the data value for the correct data type.

timeNum.m, trainNum.m, voltNum.m files

Functions that convert string user controls to the correct data type and value.

WriteAMSFile.m and ReadAMSFile.m files

Functions that read and write instrument settings to properly formatted text files

libraries folder

A folder with the necessary instrument libraries

images folder

A folder with images used in the user interface

Data Files folder

A folder with a few instrument settings text files.

Model3800BasicCommands.m

An example file that shows the basic commands within the AMS3800Interface library, and the steps needed to take to successfully communicate with the instrument. The basic process is:
1) Provide a path the .NET library

AM = NET.addAssembly([pwd '\libraries\AMS3800Interface_NET.dll']);
2) Create an instance of the instrument object

my3800 = AMS3800Interface_NET.Ams_3800;
3) Get the USB interface

reply=my3800.getInterface();

4) Set or Read values

my3800.SetListValue(0, AMS3800Interface_NET.IndexListControls.IdxGlobalEnable, AMS3800Interface_NET.GlobalEnable.Enabled.int32)
index = my3800.GetListValue(0, AMS3800Interface_NET.IndexListControls.IdxStatus) + 1;

5) Close the USB interface

AMS3800Interface_NET.dll
All messages sent to the model 3800 use the methods in AMS3800Interface_NET.dll. Below is a short description of each of these methods.

closeInterface() as void
Closes the USB interface
GetAllChanVals() as Ams3800Channel
This will return a structure of values from the instrument. The structure is of type Ams_3800.Ams3800Channel. This method is used in the Upload.vi SubVI.
Ams3800Channel:

 Public Structure Ams3800Channel
 Dim Status As Status
 Dim TriggerSource As TriggerSource
 Dim TrainNum As Integer
 Dim Waveform As Waveform
 Dim PairedPulseDirection As PairedPulseDirection
 Dim Combo As Integer
 Dim GateConnection As GateConnection
 Dim TimeResolution As TimeResolution
 Dim SyncOutputSource As SyncOutputSource
 Dim SiuConnnected As SiuConnnected
 Dim SiuError As Boolean

' time in ms 0 to 900,000.000ms * time resolution(1,10,100,or 1000)
 Dim TrainDelay As Double

 Dim TrainWidth As Double
 Dim TrainPeriod As Double
 Dim PulseDelay As Double
 Dim PulseWidth As Double
 Dim PulsePeriod As Double
 Dim PulseInterphase As Double
 Dim PairedStart As Double
 Dim PairedChange As Double
 Dim Offset As Integer ' value in mV -10,000 to +10,000mV
 Dim Pulse1 As Integer
 Dim Pulse2 As Integer
 Dim StepStart As Integer
 Dim StepChange As Integer
 End Structure

GetAllGlobals() as Ams3800Global
This will return a structure of values from the instrument. The structure is of type Ams_3800.Ams3800Global. This method is not used in the Matlab project.

Ams3800Global :

 Public Structure Ams3800Globals
 Dim FpgaRev As String
 Dim ComProtocolRev As String
 Dim AmuletRev As String
 Dim McuRev As String
 Dim GlobalEnable As GlobalEnable
 Dim ControlMode As ControlMode
 Dim GlobalErrorFlag As Integer
 Dim SerialNumber As String
 Dim SettingName() As String
 End Structure

GetAmpValue(Int32 ch, AMS_3800.IndexAmpControls cntr) as Int32
GetAmpValue will return a voltage amplitude value in mV for the selected control and channel. The selected controls are: offset(IdxOffset), pulse1(IdxPulse1), pulse2(IdxPulse2), stepping pulse change(IdxStepChange), and stepping pulse start(IdxStepStart).

Ex: GetAmpValue(Ams_3800.ChNumber.ch1, Ams_3800.IndexAmpControls. IdxPulse2)
IndexAmpControls:
 Public Enum IndexAmpControls
 IdxOffset = 0

 IdxPulse1 = 8

 IdxPulse2 = 16

 IdxStepChange = 24

 IdxStepStart = 32

 End Enum

ChNumber:

 Public Enum ChNumber
 ch1 = 0

 ch2

 ch3

 ch4

 ch5

 ch6

 ch7

 ch8

 End Enum

GetFlash(Int32 slot) as Boolean
GetFlash will load one of the 8 complete instrument settings saved in flash to active memory. These settings will immediately set the outputs of the stimulator to whatever was saved in flash.
getInterface(String&, error_msg)

getInterface requires an empty string to store any error messages generated when the method tries to establish a USB connection to the instrument. If successful the software can start sending commands the instrument.
GetListValue(Int32 ch, AMS_3800.IndexListControls cntr)
GetListValue gets the instrument control setting for one of the integer list controls. The first parameters is ch for the channel number 0 to 7, ch is ignored if cntr is for a global control. The second parameter is cntr for the control type of one of the IndexListControls. The method returns the setting value as an integer.
Ex: GetListValue(Ams_3800.ChNumber.ch6, Ams_3800.IndexListControls.IdxStatus) gets the status for channel 6
IndexListControls:

 Public Enum IndexListControls
 IdxStatus = 0

 IdxTriggerSource = 8

 IdxTrainNumber = 16

 IdxWaveform = 32

 IdxPairedPulseDirection = 48

 IdxComboOutput = 56

 IdxGateConnection = 64

 IdxTimeResolution = 72

 IdxSyncOutputSource = 80

 IdxGlobalControlMode = 197

 IdxGlobalEnable = 199

 IdxGlobalErrorFlag = 200

 End Enum

GetNameControl(AMS_3800.IndexNameControls cntr) as string
GetNameControl gets a string name for one of the control settings. The cntr parameter identifies the control type of one of the IndexNameControls. The method returns the string name.

Ex: GetNameControl(Ams_3800.IndexNameControls. IdxSetting1) gets the name of flash slot 1.

IndexNameControls:
 Public Enum IndexNameControls
 IdxSetting1 = 172

 IdxSetting2 = 173

 IdxSetting3 = 174

 IdxSetting4 = 175

 IdxSetting5 = 176

 IdxSetting6 = 177

 IdxSetting7 = 178

 IdxSetting8 = 179

 IdxSerialNumber = 189

 End Enum

GetNameIndicator(AMS_3800.IndexNameIndicators cntr) as string
GetNameIndicator gets a string name for one of the control settings. The cntr parameter identifies the control type of one of the IndexNameIndicators. The method returns the string name.

Ex: GetNameIndicator (Ams_3800.IndexNameIndicators. IdxMCUrev) gets the revision of the microcontroller.

IndexNameIndicators:

 Public Enum IndexNameIndicators
 IdxFPGArev = 181

 IdxCommunicationProtocolRev = 182

 IdxAmuletRev = 183

 IdxMCUrev = 184

 End Enum

GetReply(Byte[] inBytes, Int32 retsize, Byte[]& outBytes) as boolean
GetReply sends and receives commands to the instrument in raw binary format. Inputs are the sending command and parameters in the inBytes array, the size of the reply size, and a pointer to the output array. The function will return a true if the commands were received correctly by the instrument and a reply occurred. It will also fill the outByte array with the instruments reply.

Ex: GetReply([0xD5, 0x43, 0x37, 0x30, 0x31], 5 , bytearray)
GetSiuIndicator(Int32 ch, AMS_3800.IndexSIUIndicators cntr) as Int32
GetSiuIndicator returns either error status or connection status for a channels SIU. Input ch is the channel number (0-7) for the SIU. Input cntr indicates if the retrun value type.
Ex GetIndicatorValue(Ams_3800.ChNumber.ch6, Ams_3800.IndexListControls.IdxStatus) gets the status for channel 6
GetTimeValue(Int32 ch, AMS_3800.IndexTimeControls cntr) as double
GetTimeValue gets a decimal number representation of one of the time parametes. . Input ch is the channel number (0-7). Input cntr is the index to the time value of interest. The method returns a decimal number from 0.000 to 900,000.000.
Ex: GetTimeValue(3, IdxTrainPeriod) gets the train period for channel 4 in milliseconds.

IndexTimeControls:

 Public Enum IndexTimeControls
 IdxTrainDelay = 100

 IdxTrainWidth = 108

 IdxTrainPeriod = 116

 IdxPulseDelay = 124

 IdxPulseWidth = 132

 IdxPulsePeriod = 140

 IdxPulseInterphase = 148

 IdxPairedStart = 156

 IdxPariedChange = 164

 End Enum

IsCompInControl() as Boolean
IsCompInControl returns a true or false depending on if the computer is controlling the instrument or not.
isConnected() as Boolean
isConnected returns a true or false depending on if the computer is connected to the instrument.
SetAmpValue(Int32 ch, AMS_3800.IndexAmpControls cntr, Int32 amp) as Int32
SetAmpValue returns the millivolt value for one of the amplitude controls. Input ch is the channel number (0-7). Input cntr is the index to the amplitude control of interest. The method returns the value in millivolts from -10,000 to 10,000.
Ex:GetAmpValue(Ams_3800.ChNumber.ch4, Ams_3800.IndexAmpControls.IdxOffset) would return the voltage level for channel fours offset.
IndexAmpControls:

 Public Enum IndexAmpControls
 IdxOffset = 0

 IdxPulse1 = 8

 IdxPulse2 = 16

 IdxStepChange = 24

 IdxStepStart = 32

 End Enum

SetFlash(Int32 slot, String name)

SetFlash will save the instruments current settings to one of the instrument flash slots (0-7) and same a string name identifying the settings.
SetInstrInControl()

SetInstrInControl will change the control of the instrument from the instruments front panel touch screen to computer control.
SetListValue(Int32 ch, AMS_3800.IndexListControls cntr, Int32 value) As AmsErrors
SetListValue sets the instrument control setting for one of the integer list controls. The first parameters is ch for the channel number 0 to 7, ch is ignored if cntr is for a global control. The second parameter is cntr for the control type of one of the IndexListControls. The third parameter is value and is the index value desired for the control. The method returns an integer responding to one of the error codes in AmsErrors.
Ex: SetListValue(3, Ams_3800.IndexListControls.IdxStatus, Ams_3800.Status.ChOn) sets the status for ch 4 to on
AMSerrors:

 Public Enum AmsErrors
 IO_OK = 90000

 IO_Error = -90000

 Instrument_Error = -90001

 Parameter_Error = -90002

 End Enum

SetNameControl(AMS_3800.IndexNameControls cntr, String Name) As AmsErrors
SetNameControl sets a string name for one of the control settings. The cntr parameter identifies the control type of one of the IndexNameControls. The name parameter is the new string value for that control
Ex: GetNameControl(Ams_3800.IndexNameControls. IdxSetting1, “myname”) sets the name of flash slot 1 to “myname”
SetTimeValue(Int32 ch, AMS_3800.IndexTimeControls cntr, Double time) As AmsErrors
SetTimeValue sets the decimal number representation of one of the time parametes. Input ch is the channel number (0-7). Input cntr is the index to the time value of interest. Input time is the decimal number from 0.000 to 900,000.000.

Ex: SetTimeValue(3, IdxTrainPeriod, 1.200) sets the train period for channel 4 to 1.2ms.

PAGE

